
                                                Map-colouring with Polydron 
 
The 4 Colour Map Theorem says that you never need more than 4 colours to colour a map so 
that regions with the same colour don’t touch. You have to count the region round the edge 
because the theorem is really about a map drawn on a sphere. The theorem is shape-blind. It 
doesn’t matter what shape a region is. What matters are the regions it shares a border with. 
 
If the shapes are polygons so that the sphere becomes a polyhedron, colouring the map can 
still be a challenge and the Polydron pieces in their 4 standard colours are made for the job. 
The Framework shapes are best because you can see through to the other side. 
 
If you’ve built the Platonic solids, where the polygons are regular and all the same, and the 
Archimedean solids, where the polygons are regular and not all the same but arranged the 
same way round each vertex, you’re ready for these tasks. 
 
It will help always to ask ourselves these questions: 

 
1.   What must the least number of colours be? 
2.   Can I use symmetry to help me? 
3.   Can I use what I learned from one task to help me with another? 

 
I imagine us building a solid in just one colour and rolling it around in our hands. We shall 
need to make local observations, involving a single vertex, and global observations, where 
we look at the solid as a whole. The local observation tells us only the least number needed. 
We may get away with using just that number or we may need one more.  
 
 

 

At these vertices an odd number of faces meet:

At these vertices an even number of faces meet:

Since we need 3 colours 
around these vertices, 
we know we need at 
least 3 colours for the 
solid as a whole. 

Since we need 2 colours 
around these vertices, 
we know we need at 
least 2 colours for the 
solid as a whole.



 
If we make a slice through a vertex (we truncate the solid), the new face must have a 
different colour from all those round it, which increases the number of colours needed at that 
vertex by 1: 

 
 
 
Case A includes all the following solids, which therefore require 4 colours: the truncated 
tetrahedron, 𝟑. 𝟔𝟐, the truncated cube, 3.𝟖𝟐, the truncated dodecahedron, 3.𝟏𝟎𝟐, and the 
truncated icosahedron, 𝟓. 𝟔𝟐.  This picture shows the last one (the football) with the original 
solid inside, showing how, what were triangles and are now hexagons, can retain their 
original colours: 
 

Figure A Figure B4 colours needed 
here so 4 for the 
whole solid

3 colours needed 
here so at least 3 for 
the whole solid



                       
 
 
These diagrams depict not just truncated solids but any where a face is surrounded by faces 
which themselves touch.  
 
For example, in figure A we could be looking at the regular tetrahedron, 𝟑𝟑, whose net is 
shown below left, or the regular dodecahedron, 𝟓𝟑, part of which is shown below right … 
 
 
 

                          
 
 



or at a prism whose top and bottom faces have an odd number of sides.  
 
In figure B we could be looking at a prism whose top and bottom faces have an even number 
of sides. These include the cube, 𝟒𝟑.  In truncated solids the new faces are isolated from each 
other so, if we need 2 colours for the original solid, we shall need no more than 3 for the 
truncated form: we just give them all the 3rd colour. An example is the truncated 
octahedron, 𝟒. 𝟔𝟐. To see why the octahedron itself, 𝟑𝟒, only needs 2 colours, think of it as 
a triangular antiprism. In an antiprism we fit together two congruent pieces and just flip the 
colours used in one, for the colours used in the other. As you see, the number of sides the top 
and bottom faces have doesn’t matter. 
 
 

 
 
 
In the cuboctahedron, 3.4.3.4 no triangle touches another triangle and no square touches 
another square. Each may therefore receive its own colour, giving a total of 2. The same 
applies to the two constituent face types of the icosidodecahedron, 3.5.3.5, and the three of 
the rhombicosidodecahedron, 3.4.5.4, the truncated cuboctahedron, 4.6.8, and the 
truncated icosidodecahedron, 4.5.10, which therefore need just 3 colours. 
 
Interesting cases are the snub cube, 𝟑𝟒. 𝟒	
  and snub dodecahedron, 𝟑𝟒. 𝟓. Take the first. Of 
the 4 triangles around each vertex one does not touch the square. Since no square touches 
another, all the squares and this particular set of triangles can receive the same colour. This 
network isolates triangle pairs (bent rhombuses). These need just 2 colours. As a result only 3 
colours are needed for the solid as a whole. Substituting ‘pentagon’ for ‘square’, the same 
applies to the snub dodecahedron: 
 



 
 
 
In the case of the rhombicuboctahedron, 𝟑. 𝟒𝟑 one of the squares around a vertex does not 
touch triangles. The triangles are isolated from each other so, again, both sets of faces can 
receive the one colour. Into the gaps in this network fall the remaining squares, which receive 
a second colour, so the solid only needs 2. 
 
One solid remains to be dealt with, the icosahedron, 𝟑𝟓. As with antiprisms, a triangle’s 
neighbours do not touch. Here we draw the net, looking down on a rotation symmetry axis of 
order 3, and try to preserve that symmetry in our colours: 
 
 
 
 



 
 
The white arrows show the vertices which become one when the net is closed. The black 
lines show the edges of the final face which we must insert: 
 

                                 
 
As you see, we have the choice of red,                  … or blue, giving this number  
giving this number of each colour:                        of each colour: 
 
Red Blue Green                                              Red    Blue    Green 
  8          6          6                                                       7        7          6 



Having decided on the number of colours needed, it may still not be easy to arrange them 
correctly. An example is one of the simplest solids, the regular dodecahedron. As with the 
icosahedron, it’s useful to draw the net looking down on a rotation symmetry axis passing 
through the centre of a face, in this case one of order 5: 
 

 
 
Moving outwards from the central pentagon, we alternate blue and green in the first ring, 
requiring yellow to close the circuit. What we must then do is alternate the other pair of 
colours, red and yellow, in the outer ring, ensuring that a yellow face does not meet the 
yellow pentagon in the inner ring. Again we need a third colour, green, to close the circuit. 
But that is OK because, as shown by the black lines, that only uses up 3 colours, leaving 
available a 4th, blue, to close the solid: 
 

                                  
 



12 faces, 4 colours, 3 of each. As you would expect, they are symmetrically disposed about a 
3-fold axis of rotation symmetry. The photograph shows the axis about which the red faces 
are symmetrically arranged: 
 

 
 
One of the nicest features forced by symmetry is the disposal of triangles about the decagonal 
faces in the truncated dodecahedron. The picture shows the truncated form beside the 
original: 
 

                            
 



The colour scheme means there must be 3 consecutive triangles of colour A and 1 triangle 
each of colours B and C around a decagon of colour D.  
 
Paul Stephenson, 5.2.17 
 
Post script 
 
In my piece ‘The Magic Mathworks Travelling Circus and Polydron’ I showed a net of the 
snub dodecahedron using 4 colours. Only recently did I realise that (as explained in this 
article) 3 are enough.  


