
     The Limiting Case: Sublime or Ridiculous? 
 
If you followed Chris Pritchard’s ‘Round peg in a square hole’ series, and joined him finally 
[Pritchard, 9.2013] in “stretching the argument to its limit”, you will already know the answer to 
that question: Both. 
 
Mathematical definitions are tight but broad. If an object is defined in terms of a variable, it’s worth 
seeing what happens at the very ends of the range of values it can take. These are the ‘limiting 
cases’. Here are six examples from geometry. The levels of difficulty for the 5 sections are:  
1, 6: KS3; 2, 5: KS4; 3, 4: AS/A. 
 
1. Define a (single right circular) cone as follows. Given a circle and a central, perpendicular axis, 
take a line segment from the circumference to the axis, making an angle θ  with it. The cone is the 
solid of revolution of that line segment defined over the interval 00 to 900. Here are the possible 
cases: 
 
θ = 0°             0° <θ < 90°    θ = 90°  
 
special case:            general case:   special case: 
the cylinder            the cone    the disk 
 

     
 
 

 
 
 

 
 
(You see now why I used such a clumsy definition: I didn’t want the case θ = 0°  to be a straight 
line.) Any property which does not depend on the value of θ  will be shared by all cases. We may 
not – and generally won’t – know which properties do and which do not, but we can take one and 
test it.  
 
A ‘developable’ surface is one which can be laid out flat. The disk is already a flat surface. Are the 
cylinder and cone also developable? Yes: as a rectangle and circle sector respectively. The latter 
paper folding activity is most instructive. Follow it with this question: What, roughly, is the semi-
apical angle of the filter funnel you use in the chemistry lab? (Hint: think of the way you fold the 
filter paper.) [note 1] 
 
2. Take the cone again, this time a double one, and generate the solid by rotating any line distinct 
from the axis. I have specified no variable but we can find the limiting cases by inspection: 
 
 
 
 
 
 
 



 
 
 
lines parallel to   lines skew to           lines coincident 
the axis,   the axis,           in a point necessarily  
special case:   general case:       on the axis, special case: 
the cylinder   the hyperboloid           the cone  
    (‘of one sheet’)Limiting 

             
 
 

 
 
 

 
 
 

 
 
We know that the curve produced by a plane section through the cone, and making an angle greater 
than the semiapical angle with the axis, is an ellipse. In the light of section 1 we can view the 
cylinder as a cone whose semiapical angle is zero and claim that any plane section of the cylinder 
making an angle greater than zero with the axis is an ellipse. 
 
If we can obtain elliptical sections through the cone and cylinder, might the same also be possible 
of the hyperboloid? 
 
A model of the ‘Cundy-&-Rollett’ type, (built as a maths club project?), allows the children to 
move continuously from the cylinder to the double cone. Many observations can be made beyond 
those relating to our immediate question [note 2], the answer to which is ‘Yes’. Indeed all the 
conics can be obtained by slicing a hyperboloid [Mnatsakanian & Apostol, 2012]. The picture 
shows an ellipse in general position. (A special family shares a centre with the hyperboloid, a case 
not realised with the double cone.) As with the cone (but not the cylinder) the general ellipse 
centres lie off the rotation axis. Parallel sections of the cylinder give congruent ellipses; those of the 
cone, similar ones. With the hyperboloid there is no such simple relation. 
   
 
        
            Where   
       
 
       
 
 
 



 
 

 
 
What about the question we asked of example 1: The solids at both ends of the range here are 
developable. What happens in between?  
 
We try to wrap the hyperboloid in paper but make a right mess of it. It seems developability 
requires the generator to share a plane with the axis. 
 
3. The following was a ‘Putnam’ problem [note 3].  
 
Consider an ellipse lying in the first quadrant of the (x,y) plane and tangent to the coordinate axes. 
Prove that the distance from the centre of the ellipse to the origin depends only on the semiaxes of 
the ellipse and not on its orientation. 
 
If we let the length of the semi-minor axis, b, range between zero and the length of the semi-major 
axis, a, we have these cases: 
 
b = 0           0 < b < a    b = a 
 
 
 
 
 
 
 

 
 
 

The case b = a offers no technical help but serves a heuristic purpose: it reminds us that our ellipse 
should make a complete revolution.  
 
The angle subtended by a circle diameter at a point on the circumference is a right angle. 
Conversely, if a right angle moves so that the arms pass through the ends of a straight line, the 

C 

O 



vertex traces a circle. The case b = 0 invites us to swap the roles of C and O with this result. Taking 
their cue from this special case, our sixth form students can fix the ellipse centre at the origin and 
use the bookwork they have learned in their lessons on the quadratic equation and coordinate 
geometry in this way, [paraphrasing Bostock, Chandler & Rourke, 1982], [note 4]: 
 

We need the condition for a line to be tangent to an ellipse. We solve y = mx + c  with x2

a2 +
y2

b2 = 1 to 

give a quadratic in x, then put in the condition for equal roots, obtaining y = mx ± b2 + a2m2 . We 
square this to give a quadratic in m, representing a pair of tangents: 
(x2 − a2 )m2 − 2xym + (y2 − b2 ) = 0 , then impose the condition for the two tangents to be 
perpendicular, i.e. for the product of the roots to be -1, and we have x2 + y2 = a2 + b2 , the equation 

of a circle, centre the origin, radius a2 + b2 . 
 
A complete revolution of the ellipse produces a complete oscillation of the point in its circular arc. 
 
(In the case b = 0 the general point on the line executes an ellipse, making possible the ellipsograph 
(‘trammel of Archimedes’). 
 
4. Cut a cone, semi-apical angleα , with a plane normal to the axis, (i.e. making an angle θ = 90°  
with it), and rotate the plane until parallel to a generator, (thus making an angle θ =α  with the 
axis). You watch a circle become an ellipse and finally a parabola: 
 
 
 
 
          θ = 90°     α <θ < 90°     θ =α  

 
    
                                                   
  

 
 

Centre and foci one    Centre and foci distinct            One focus remains, 
and the same point                 the centre and the  
                   other focus move  
                   off to infinity 
 
The point of that sequence is to show that, when you look along the axis of a parabola, you could be 
looking along the major axis of an ellipse. 
 
Newton thought of the Moon as a projectile which didn’t land. Kepler found that the orbit of a 
planet round the sun – and, by extension, that of any satellite about its parent body - was an ellipse 
with the centre of the parent at one focus. Vi Hart [note 5] reminds us that the path of a projectile 
which does land, though to good accuracy a parabola, is more accurately an arc of an ellipse with 
one focus at the centre of the Earth. A question for your A level students: Assuming a launch angle 
of 450, where is the other? [note 6] 
 
 



5. Mnatsakanian & Apostol [op. cit.] use the term circumgon for a polygon which can be 
circumscribed about a circle. Circumgons cover this range in terms of the number of sides, n:  
 
                ∞            n > 2                   n = 2     

 
 

 
 
 
 

 
 
 
 
The case n = 2 holds no interest. But, as shown, the general circumgon can be dissected into 
triangles. The area of each is half the side x the altitude. Since the altitude is the radius of the 
incircle, we immediately have the area of the circumgon: inradius x half the circumference. Now let 
the number of sides approach infinity and we have the circle itself. Archimedes expressed the area 
of the circle in just this way when he compared it to the area of a right triangle whose legs were 
respectively the circumference and the radius. For a proof, Archimedes boxed the circle between 
regular polygons of increasing numbers of sides [note 10]. He went further than his predecessors by 
estimating the ratio of half-circumference to radius, viz. π . Your students could try the exercise 
nrich.maths.org/841 (‘Approximating pi’). [note 7]. The same formula emerges from the dissection 
of a circle we often use with our children, in which we pack sectors nose-to-tail to make a wavy 
parallelogram [note 8]. We can also dissect the circle into concentric rings and build Archimedes’ 
triangle by straightening them out [note 9]. Your students can find all three methods at 
en.wikipedia.org/wiki/Area_of_a_disk , where the second and third methods are animated under the 
respective headings ‘Rearrangement proof’ and ‘Triangle method’.   
 
6. If you go round a polygon and sum the parts d  by which each vertex falls short of π , you get 
2π . If you go all over a polyhedron and add the parts D by which the sum of the facial angles at 
each vertex falls short of 2π , you get 4π  [note 10]. In a regular polygon, or a regular or 

semiregular polyhedron, the vertices are identical so that their number, v, = 2π
d

 and 4π
D

 

respectively.  
 
Here are the regular polygons for 0 ≤ d ≤ π  ( v ≥ 2 ) 
 
 
d = 0  ( v = ∞ )       0 < d < π  (v > 2)   d = π  (v = 2)    
 

 
 

      regular polygon      
 
 
 

 
 



A polygon has the same number of sides and vertices so in the case d = π  the ‘line’ has 2 sides. I 
don’t know what purpose this case may serve, but the case d = 0, seen by the Greek mathematicians 
of the 5th century BC as the end of a sequence of polygons with more and more sides, inspired a 
series of developments in integral calculus (not least the work of Archimedes, the subject of section 
5) which culminated in the limit concept 23 centuries later [note 11]. 
 
Here are the regular and semiregular polyhedra for 0 ≤ D ≤ 2π  ( v ≥ 2 ): 
 
D = 0  ( v = ∞ )          0 <  D < 4π

3  (v > 3)     D = 4π
3  (v = 3)    D = 2π  (v = 2) 

 
regular or          regular or    
semiregular          semiregular 
tessellation          polyhedron     
 
Like the two on the left, the two right-hand cases must satisfy Euler’s polyhedron formula, 
v + f = e+ 2 . So, by analogy with the line in the polygon case, the ‘triangle’ has 2 faces. The line 
has an equal, but unspecified, number of edges and faces. Think of it as a globe whose surface is 
divided by meridia except that the slices in between (the lunes) have no width and zero curvature.  
 
More interesting are the two cases on the left. 
 
Take a particular tiling and think of it as the last member of a sequence of forms with diminishing 
D. Name a form by listing, by the number of their sides, the faces you meet as you go round a 
vertex. Thus a cube is 3.3.3, abbreviated 33 . The truncated icosahedron (football) is notated 5.6.6, 
abbreviated 5.62 . Using Polydron’s ‘Archimedean solids’ kit (or, failing that of course, any others 
kits of interlocking polygons you happen to have), guide your children, (who should do all the 
arithmetic), along some of the following sequences. You can project or download an empty version 
of the chart below from www.magicmathworks.org/shapechart for completion by the children. 
 
The sequences have no deep mathematical significance. They’re just patterns. But they provide a 
bridge between two otherwise disparate sets of objects: polyhedra on the one hand, tilings on the 
other. By moving backwards and forwards along the sequences, interpolating where we find a gap, 
we identify candidates for further examination. 
  
For a possible vertex, D must divide 7200 exactly. But that does not guarantee that the vertex will 
repeat. For example, 52.6  would be a solid with 30 vertices, but you find you can’t build it. A good 
exercise is to tabulate all eligible forms which can be made from 3-, 4-, 5-, 6-, 8-, 10-, and 12- gons. 
Not counting prisms (symbol 42 . n) and antiprisms (symbol 33 . n), of which there are an infinite 
number, and counting left- and right-handed forms just once, you find there are 51, of which 29, i.e. 
just over half, repeat. 
 
 
 
 
 
 
 
 
 

  



 
 
 
 
 
 
 
 
D 180°

 
120°
 

90°  60°  36°
 

30°  24°  15°  12°  6°  0°  

v
 

   4       6         8 12  20  24  30 48  60 120 ∞  

 33  34   35        36  
   43         44  
      3.43      4.43 =

44
 

    3.62   4.62    5.62   6.62

= 63
 

 33   43   53       63  
   43 =

4.42

 

   
4.62  

     
4.82  

      34.4    34.5   34.6  
      3.43 =

3.4.4.4
 

  
3.4.5.4
 

 
3.4.6.4

 

  
    3.62   3.82    3.102   3.122  
    3.4.3.4    3.5.3.5

 
   3.6.3.6  

    35 =
3.3.3.3.3
 

      
3.3.4.3.4 =

32.4.3.4
 

      34.4 =

33.3.4
 

    
33.4.4 =

33.42

 

      4.62 =
4.6.6

 
 

4.6.8
 

 
4.6.10
 

4.6.12
 

 
 
 
 
Here is the last case [note 12]: 



 
Of more significance are the mappings below. The arrows show operations by which you can 
change one form into another.  
 
The blue arrows show truncation, by which you cut off corners. (We apply it here to regular forms 
only). You grow a new vertex for each edge you cut: 
 
 

                        
  

                                                                                                      
Since the number of edges meeting in a vertex is the same as the number of faces, recorded in the 
index, you can read it straight off the symbol. The new v is then just the old v times this number. 
Get the children to truncate one Polydron model, hazard their own rule, test it on other solids and, if 
successful, justify it to the class. You may then write down some of the following and the children 
can check the arithmetic from their charts.  
 

4.6.12

4.6.10
4.6.8

4.6.6



The mapping, then, shows the old index becoming the number of sides of the new face, but also the 
old faces doubling their number of sides:  
          33 → 3.62  
               x 2 
33 → 3.62     34 → 4.62  35 → 5.62  36 → 6.62 = 63  
43 → 3.82  44 → 4.82  
53 → 3.102  
63 → 3.122  
 
The green arrows show alternation, by which you cut off every other corner. It only works on forms 
where the faces have an even number of sides. Here we’ve marked with stickers the vertices we 
want to keep/lose. The choice of white or black determines the handedness of the result:  
     
                 
                  

               
 

The effect is to halve the number of vertices throughout. You may proceed as above. In terms of the 
symbols, ‘4’ disappears because a square becomes an edge. Each of the other faces contributes 2 
edges to a vertex.  
 
43 = 4.42 → 33  4.62 = 4.6.6→ 34.3= 35  4.82 → 32.4.3.4  
              4.6.8→ 34.4  
              4.6.10→ 34.5  
              4.6.12→ 34.6  
 
44 → 44  (itself)  
 
The yellow arrows show duals. In dual forms we swap faces for vertices, thus number and index in 
the symbol. In accordance with this rule, the tetrahedron and square grid are self-dual. (We confine 
ourselves to regular forms. The duals of most semiregular forms do not have regular faces.)  
 
33 ↔ 33  34 ↔ 43  35 ↔ 53  36 ↔ 63  44 ↔ 44  
 
If the children have met the Euler polyhedron formula, they will realise that the number of edges 
must remain unchanged. They can observe on their models the new edges set at right angles to the 
old.  



                        _ 
 
More examples from geometry will occur to you, and perhaps you can think of other areas of 
mathematics where “stretching the argument to its limit” yields results?  
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Notes 
 
1.  Have a stock of filter papers to hand so that the children don’t have to rely on memory. When 
you fold the paper disk you produce a cone which has half the base circumference, therefore radius, 
of the original disk. That radius is the slant height of the cone. This gives you a  
‘1-2- 3 ’ triangle and a semi-apical angle of arcsin1 2 = 30° . This is a least value. For most 
funnels the actual figure is rather higher. 
2. For an animation go to www.its.caltech.edu/~mamikon/TwistCyl.html .  
The model shown uses Meccano parts now hard to obtain. One suggestion is a wooden equivalent 
using basket-weaving bases top and bottom. Shops such as Hobbycraft stock these.  
Clear polycarbonate, a less brittle alternative to cast acrylic sheet (‘perpsex’), gives you a plan view 
so that you can watch the hyperboloid close like the iris diaphragm on a camera. Approach the 
design technology department. They will have blanks which can be drilled but also useful advice on 
the whole enterprise.  
There are two possible arrangements: the model shown in the text, where the string feeds through as 
you twist the top, and the model shown below, where fixed lengths of shearing elastic stretch. 
Transformations are easier to follow with the second but, because of the forces the apparatus must 
withstand, it requires some engineering.  



 
 
Mark circular sections of the original cylinder with stickers. On both, circles stay circles and shrink. 
In the first, they rise and bunch. In the second, they keep their height. In the second, the figure is 
symmetrical with respect to the centre so you only need pay attention to the top or bottom half. 
Imagine the central circle fixed so that circles above rotate one way; circles below, the other. They 
turn in proportion to their distance from the centre. They shrink in proportion to their distance from 
the base (or top). 
We know straight lines stay straight lines, for these are the threads. We see them lengthen and 
swing in towards the axis. But we can also resolve their motion into these two components: a 
torsional shear, which would turn them into helices; and a radial shear towards the axis.   
3. Problems in the annual William Lowell Putnam Mathematical Competition are of the same 
standard as the Student Problems in The Mathematical Gazette. If you want to use them, the best 
place to start is www.math.niu.edu/~rusin/problems-math/ . 



4.  The locus is known as the ellipse’s orthoptic or director circle. Another example of a limiting 
case: the parabola’s orthoptic circle is its directrix, a straight line therefore. When you follow the 
sequence of figures for section 4, you realise it has to be.  
5.  Go to www.khanacademy.org/math/recreational-math/vi-hart/doodling-in-math-class--
connecting-dots. Vi Hart is the daughter of George Hart, the moving spirit behind America’s first 
(the world’s second) hands-on maths museum, Momath. 
6.  For the solution go to www.atm.org.uk/mt238 . 
7.  The formula is stated in Proposition 1 of ‘On the Measurement of a Circle’, one of Archimedes’ 
few works to survive in the original. The estimation of π  constitutes Proposition 3.  
8. This treatment has not been traced back beyond the Renaissance. The Italian Leonardo da Vinci 
and Japanese Satō Moshan both used it. 
9. This representation is due to the Jewish philosopher-scientist Rabbi Abraham bar Hiyya Hanasi, 
who lived in France and Spain during the 11th to 12th centuries. Go to www.cut-the-
knot.org/Curriculum/Geometry/RABH.shtml .  
10. The last result was discovered by Descartes. For the way George Polya thought he might have 
derived it, go to www.magicmathworks.org/Polya-Descartes. For a proof using the Euler 
polyhedron formula, thus reversing the historical order, go to 
www.magicmathworks.org/masterclasses/polyhedra-masterclass.pdf and scroll down to Part 1(d). 
11. Go to en.wikipedia.org/wiki/Method_of_exhaustion . 
12. I nested these polyhedra for the sake of the photograph but the children will do so uninvited. 
One’s reminded of Kepler’s model of the cosmos. (Go to en.wikipedia.org/wiki/Johannes_Kepler 
and scroll down to ‘Mysterium Cosmographicum’.) But Kepler was following more ancient 
practice. I feel sure a student of comparative anthropology would recognise the model as an 
archetype. Go to en.wikipedia.org/wiki/Chinese_boxes and also consider the endless fascination for 
2-3 year olds of the toy ‘building beakers’. 
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