Set 3 - Nets of a cube puzzle

O Here are all eleven different nets for a cube, together with four that cannot be folded to make a cube.

O Can you find the four impostors?

Set 3 - Pypamids

O Here is a square-based pyramid.
O A pyramid can have any polygon for the base and any triangles for the sloping faces.

O Make a pentagonal-based pyramid.

O Make an unusual pyramid with the shapes on the right.

More Ideas

O Make an enlargement of the pyramid at the top of the page.

O You will need four squares for the base and lots of equilateral triangles.

O Try to work out how many triangles you need before you start.

O Make a very large pyramid with nine squares for the base.

Set 3 - The Tetrahedron

O A tetrahedron is a special pyramid made from four triangles.

O Make a tetrahedron with the four triangles on the right.

O Make a different tetrahedron with the four triangles below.

O Make a tetrahedron with three isosceles triangles and one equilateral triangle.

O Make a tetrahedron with two equilateral triangles and one right-angled triangle.

O Make a tetrahedron with three different triangles using the pieces on the right.

More Ideas

O It is possible to make a tetrahedron from more than four triangles, if you connect some of them together first to make larger triangles.

O Use all six triangles on the left to make a tetrahedron.

Set 3 - Prisms and Antiprisms

O A prism is made from two polygons with a belt of squares or rectangles between them. Here is a hexagonal prism.

O Make a pentagonal prism from two pentagons and five squares.

O Make an octagonal prism.
O Antiprisms are made from two polygons separated by a belt of equilateral triangles.

O This pentagonal antiprism has been made with different colours so that its structure can be seen clearly.

O Make an octagonal antiprism. Part of it is shown below.

More Ideas

O The cross section of a prism is the same all the way along its length.

O Study the cross section of an antiprism carefully. What do you notice?

O Make a triangular antiprism. It has a triangle at each end and a belt of triangles. What do you notice about it?

Set 3 - Platonic Solids

O Platonic solids are special. To make them there are two rules that must be followed.

I Each one is made from only one sort of regular polygon.
2 Each vertex of a Platonic Solid is the same.
O The only Platonic Solid that can be made from squares is the cube.

O Take twelve pentagons and make the solid on the right. It is called a dodecahedron.

O There are three different Platonic Solids made from triangles.

O Make the simplest one from four equilateral triangles. It is called a regular tetrahedron.

O An octahedron is made from eight equilateral triangles. Can you make one?

O The final Platonic Solid needs twenty equilateral triangles. As it is difficult to build, here are two different views of it.

O Notice that some open triangles have been included to make it easier to build.

More Ideas

O Can you prove that there are only these five solids that fit the rules at the top of the page?

Sef 3-inombuses

O A rhombus is a quadrilateral with four equal sides. This means that a square is a special quadrilateral.

O Make the prism on the right with two rhombuses and four squares.

O Take two identical triangles and use them to make a rhombus.

O Make three different rhombuses in this way, with pairs of triangles.

O Six rhombuses can be connected to make the solid on the left.

O This solid looks a little like a squashed cube. It is called a parallelopiped as each face is a parallelogram.

More Ideas

O It is possible to use the rhombus as the base for a pyramid.

O Use the pieces on the right to make a pyramid.

O Find a different way to use the rhombus as the base for a pyramid.

Set 3 - Tetrahedron Puzzle

O Make two copies of this net using any colours.
O Fold up each of your nets to make a solid.

O Place the two solids together to make a large tetrahedron.
O When you have solved the puzzle give it to a friend to solve.

Set 3 - Faces, Vertices and Edges

O This cube has 6 faces, 8 vertices or corners and 12 edges. Make one and check.

O Make a collection of solids like the ones
 below.

O Make a larger copy of the table below.
O For each solid, record the the number of faces (F), the number of vertices (V) and the number of edges (E).

Name of Solid	Faces (F)	Vertices (V)	Edges (E)	$\mathrm{F}+\mathrm{V}$
Cube	6	8	12	14

O In the final column record the sum $F+V$.
O Try to find a relationship between the number of faces (F), vertices (V) and edges (E), for each of your solids.

O This relationship is sometimes called Euler's formula, named after the 18th century Swiss mathematician, Leonhard Euler.

Set 3 - Corners

O In this activity we are going to concentrate on the corners or vertices of a solid. In each solid, every vertex must be the same arrangement of polygons.

O This solid is made from four triangles and four hexagons. It is called a truncated tetrahedron. Two hexagons and a triangle meet at every vertex.

O Make this solid from octagons and triangles. Check that every vertex is the same.

O Make a solid from the pieces below. Every vertex must have the same arrangement of polygons.

More Ideas

O Here are two fascinating solids.

O The solid on the left has three squares and an equilateral triangle meeting at each vertex.

O This solid has four triangles and a square meeting at each vertex.

Set 3-A Stop Challence

O We are going to make this amazing solid in the shape of a star. To make it you need 24 triangles, 6 of each colour.

O Each point is in the shape of a tetrahedron made from three triangles of different colours.

O The main solid is made of eight small tetrahedrons
 connected together.

O Notice how the pieces are arranged to create the illusion of two large tetrahedrons pushed together.

O Here are two more views to let you work out where the colours go.

O The solid you have built is called a stellated octahedron.

