Gear Estimation

1 Construct this tower.

Base Detail

2 Add 2 gears.

Question:

Can you estimate how many more gears are needed to join the 2 gears together?

Answer: 12

Winding Tower

MY first

1 Create the net.

2 Make the tower.

Question:

Can you link the 2 gears together by adding 14 gears?

Tower

1 Create the net.

2 Make the tower.

Question:

What is the largest quantity of gears you can add to this model, adding them to only one side of the tower?

Answer: 11 gears.

Inverted V Model

1 Create the net.

2 Make the model.

3 Add 4 more squares with gear holes.

Questions:

Join the 2 gears together by adding extra gears.

How many different ways can this be done?

What are the smallest and largest number of gears that are required?

Possible Solutions:

The smallest number of extra gears required is 2 and the largest is 11.

Gear Square

Questions:

How many gears do you think can fit onto this cube? Will they all turn in the same direction?

Answer:

In total you can include 8 gears: 4 turn clockwise and 4 turn anticlockwise.